Farm management



Fusarium wilt of bananas is caused by F. oxysporum f.sp. cubense, a common soil inhabitant. Other formae speciales attack a wide variety of other crops, including cotton, flax, tomatoes, cabbages, peas, sweet potatoes, watermelons and oil palms.;The formae speciales of Fusarium oxysporum each produce three types of asexual spores. The macroconidia (22-36 x 4-5 µm, see Wardlaw, 1961 for measurements) are produced most frequently on branched conidiophores in sporodochia on the surface of infected plant parts or in artificial culture. Macroconidia may also be produced singly in the aerial mycelium, especially in culture. The macroconidia are thin-walled with a definite foot cell and a pointed apical cell. Oval or kidney-shaped microconidia (5-7 x 2.5-3 µm) occur on short microconidiophores in the aerial mycelium and are produced in false heads. Both macroconidia and microconidia may also be formed in the xylem vessel elements of infected host plants, but the microconidia are usually more common. The fungus may be spread by macroconidia, microconidia and mycelium within the plant as well as outside the plant. Illustrations of the conidia have been published (Nelson et al., 1983).;Chlamydospores (9 x 7 µm) are thick-walled asexual spores that are usually produced singly in macroconidia or are intercalary or terminal in the hyphae. The contents are highly refractive. Chlamydospores form in dead host-plant tissue in the final stages of wilt development and also in culture. These spores can survive for an extended time in plant debris in soil.;Mutation in culture is a major problem for those working with vascular wilt isolates of F. oxysporum. The sporodochial type often mutates to a 'mycelial' type or to a 'pionnotal' type. The former has abundant aerial mycelium, but few macroconidia, whereas the latter produces little or no aerial mycelium, but abundant macroconidia. These cultures may lose virulence and the ability to produce toxins. Mutants occur more frequently if the fungus is grown on a medium that is rich in carbohydrates.


Banana;The various symptoms of Fusarium wilt on banana are described and well illustrated by Ploetz and Pegg (1999).;The first external symptoms of Fusarium wilt on bananas is a faint off-green to pale-yellow streak or patch at the base of the petiole of one of the two oldest leaves. The disease can then progress in different ways. The older leaves can yellow, beginning with patches at the leaf margin. Yellowing progresses from the older to the younger leaves until only the recently unfurled or partially unfurled centre leaf remains erect and green. This process may take from 1 to 3 weeks in cultivar 'Gros Michel'. Often the yellow leaves remain erect for 1-2 weeks or some may collapse at the petiole and hang down the pseudostem. In contrast to this 'yellow syndrome', leaves may remain completely green except for a petiole streak or patch but collapse as a result of buckling of the petiole. The leaves fall, the oldest first, until they hang about the plant like a skirt. Eventually, all leaves on infected plants fall down and dry up. The youngest are the last to fall and often stand unusually erect.;Splitting of the base of the pseudostem is another symptom as is necrosis of the emerging heart leaf. Other symptoms include irregular, pale margins on new leaves and the wrinkling and distortion of the lamina. Internodes may also shorten (Stover, 1962, 1972, Jones, 1994, Moore et al., 1995).;The characteristic internal symptom of Fusarium wilt is vascular discoloration. This varies from one or two strands in the oldest and outermost pseudostem leaf sheaths in the early stages of disease to heavy discoloration throughout the pseudostem and fruit stalk in the later disease stages. Discoloration varies from pale yellow in the early stages to dark red or almost black in later stages. The discoloration is most pronounced in the rhizome in the area of dense vascularization where the stele joins the cortex. When symptoms first appear, a small or large portion of the rhizome may be infected. Eventually, almost the entire differentiated vascular system is invaded. The infection may or may not pass into young budding suckers or mature 'daughter' suckers. Where it does, discoloration of vascular strands may be visible in the excised sucker. Usually, suckers less than 1.5 m tall and ca. 4 months old do not show external symptoms. Where wilt is epidemic and spreading rapidly, suckers are usually infected and seldom grow to produce fruit. Above- and below-ground parts of affected plants eventually rot and die.;Fusarium wilt was reported to occur on banana cultivars of the 'Mutika-Lujugira' (AAA genome) subgroup in East Africa above 1400 m. Internal symptoms were much less extensive than those described above and external symptoms more subtle, comprising thin pseudostems and small fingers. Nevertheless, symptomatic plants were recognized by smallholders and were rogued. These mild symptoms were initially believed to be indicative of an attack on a plant whose defences have been weakened as a result of cooler conditions or other predisposing factors at altitude (Ploetz et al., 1994). Given the importance of this banana group, also referred to locally as ÔEast African highland bananasÕ, to local trade and as a staple food, further investigation was merited. This revealed that the disorder also affected non-indigenous banana types, including Cavendish and Bluggoe (which were not affected by Fusarium wilt) and was related to abnormal soil nutrient levels and farm management practice. Discoloration similar to that caused by F. oxysporum f.sp. cubense was observed in vascular tissues of affected plants. Fusarium pallidoroseum (syn. Fusarium semitectum) was consistently isolated from such tissues but found to be non-pathogenic. F. oxysporum was not recovered (Kangire and Rutherford, 2001, Rutherford, 2006).


F. oxysporum f.sp. cubense is one of around 100 formae speciales (special forms) of F. oxysporum which cause vascular wilts of flowering plants (Gerlach and Nirenberg, 1982). Hosts of the various formae speciales are usually restricted to a limited and related set of taxa. As currently defined, F. oxysporum f.sp. cubense affects the following species in the order Zingiberales: in the family Musaceae, Musa acuminata, M. balbisiana, M. schizocarpa and M. textilis, and in the family Heliconeaceae, Heliconia caribaea, H. chartacea, H. crassa, H. collinsiana, H. latispatha, H. mariae, H. rostrata and H. vellerigera (Stover, 1962, Waite, 1963). Additional hosts include hybrids between M. acuminata and M. balbisiana, and M. acuminata and M. schizocarpa.;F. oxysporum f.sp. cubense may survive as a parasite of non-host weed species. Three species of grass (Paspalum fasciculatum, Panicum purpurascens [ Brachiaria mutica ] and Ixophorus unisetus) and Commelina diffusa have been implicated (Waite and Dunlap, 1953).

From Wikipedia: